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Electromagnetism in a moving chiral medium
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We present manifestly covariant equations and boundary equations for electromagnetism in a moving
chiral medium. Then, to solve these equations, we develop a particular formalism based on a four-
dimensional extension of the Hertz vector potential satisfying a generalized wave equation. Finally, this
formalism is applied to the propagation of plane waves in a homogeneous isotropic medium and to their
excitation by a plane wave incident on the boundary of such a medium.

PACS number(s): 03.50.De, 03.30.+p

I. INTRODUCTION

Using Post’s constitutive equations [1] we present a co-
variant formalism of electromagnetism in moving chiral
media. We give for a homogeneous isotropic medium the
general formulas in terms of the usual electromagnetic
fields. Then a particular formalism to solve these covari-
ant equations is introduced. Finally, we discuss the prop-
agation and the excitation of plane waves in a moving
homogeneous chiral medium.

We first give some relations that will be useful later.
The greek and latin indices take the values 0,1,2,3 and
1,2,3, respectively, and we use the summation convention
on repeated indices; §,, is the Kronecker symbol and
€.vop 18 the permutation tensor. The components of the
metric tensor are

8w=1 g1=8»=813=—1, g,,=0 for u7v. (1)
One has the relations [2]
€€ ™7 =2807 )
€apu€PIT=851 (3)

where 87 and 83; are 2X2 and 3X3 permutation ma-
trices, respectively.

Now let G,z be an antisymmetric tensor and u,, be a
unit 4-vector (u,u*=1). Then the following identity is

easy to prove:

GaB=GapuﬁuP+Ga,3uau”+§eaﬁwe‘“’}‘f’Glpuou" , @)
so that the two 4-vectors

G,=Gu?, G*=1e"""G, u, , (5
satisfy the conditions

u,G*=ugG*F=0. (5"
We may write relation (4) as

Gop=Gug—Ggu,+€,5,G " u" . (6)

Relation (6) has been known for a long time [3] but
rarely used. It seems that people did not realize, with a
noticeable exception [4], that expressions (5) and (6) con-

1063-651X/93/48(4)/3060(6)/$06.00 48

stitute, in fact, an extension of G to a moving medium
when u , is the 4-velocity of the medium (we assume that
the velocity of light ¢=1 to satisfy the condition

u,ut=1). In the rest frame where u, =3, relations (5)

reduce to
Gj :Gj07 G*i:%eoijijk , 7
which are the non-null components of G 4.

II. COVARIANT ELECTROMAGNETISM
IN MOVING MEDIA

A. Maxwell’s equations and boundary conditions

Let F,, and G A be the two antisymmetric field tensors

with components
- - k
E;\=E;, F;=¢€uB", ®)
Gjosz, Gijze()iijk s

where E and H are the electric and magnetic fields, D is
the electric displacement, and B is the magnetic induc-
tion.

In a stationary medium the Maxwell equations are

3,G*¥=0, 93, F**F=0, 9)
where F*%# is the dual tensor
F*“B=%6“BPVFHV . (10)

Then the technique described in the Introduction gives
the Maxwell equations in a moving medium. First we
consider the 4-vectors

G*=G%Puy, G**=lePuyG

I

F*a_F*aB Fr¥a=1 aBuv F* an
= Uﬁ, ‘76 uB uv
and a simple calculation gives

F**e=F* (119

Then, using (6) and (11), Egs. (9) become

9,G%=0, u"‘aaGB=e“’3‘”uV8aGZ ,
(12)

9, F**=0, uaaaF*B=e“B’”uV8aF# .
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The relations (12) are the Maxwell equations in a medium
moving with the uniform velocity u,. Moreover, one
checks easily that in the rest frame Egs. (12) reduce to
Egs. (9).

Let us now consider the boundary conditions on a
two-dimensional (2D) surface S with normal n;. We may
look at n; as a 4-vector n, with the component n, null.
As is well known, the boundary conditions in a stationary
medium are

n (G¥—GP)=0, n (F**P—F*3F)=0 (13)

where the pairs (G, F) and (G, F) denote the electromag-
netic field on opposite sides of the surface S. The com-
parison of Egs. (9) with Egs. (13) shows that one has only
to change 9, into n, in Egs. (12) to obtain the boundary
conditions in a moving medium. It becomes

n,(G*—G*=0,
un (GP—GPy=ePy,n (GX—G}),
n, (F*—F*)=0,

u“na(F*B—ﬁ*B)=6"‘B"“’uvna(F#—ﬁu) .

(14)

These relations hold valid either for a fixed surface in a
moving medium or for a surface moving uniformly in a
stationary medium.

B. Constitutive relations

In a general linear medium with instantaneous and lo-
cal interactions between the fields the constitutive rela-
tions take the form [1]

GaB:%XaB’}WF;W , (15)
where y®%*
tions

is a fourth-rank tensor satisfying the condi-

Xaﬁ,}w: _X,Ba,kv Xaﬁ, Av— _Xa/}, vA

XaB,}\vzx)w,aB, X[aB,)w]._:O , (16)

so that this tensor has only 20 independent components.
Explicitly, one has

XO[,Oj: _eij’ XOi’jk='}’i1, Xjkmn=Klp , (17)

where the triplets j,k,/ and m,n,p are a circular permuta-
tion of 1,2,3. Moreover, we assume a nondispersive
medium. Then the tensors € and « are real, but since y is
a pseudotensor it has to be pure imaginary.

Using (8) we get from (17) the constitutive relations for

a stationary medium,

D'=€eYE;+y"B,, H'=k'B,+y"E, . (18)
€ and « are, respectively, the permittivity and the inverse
of the permeability matrices, while ¥ and its transpose ¥ T
(v =7vD) are chirality matrices [5].

For a homogeneous medium moving with the uniform
velocity u the constitutive relations are obtained with the
technique already used in Sec. Il A. From (5) and (15) we
get G*=1y*y F,  and using (6) for F,, it becomes
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Go=1x"PMup(Fru,—F u; +1€,,,F* u’)
=)("‘B’MuBuVF)L +%6Mpa)(“5’}”’u,3u TF*P) . (19)
Then, with the tensors
g =yBrvy Uy » (20a)
‘P; 4= %e}wpax b, Muﬂ u?, (20b)
relation (19) becomes
G=@"*F, +@}°F° . @
In the same way one has, according to (11) and (15),
G2 = 4" 22)

and still using (6) for F,,,

G; = %eaﬂuvxuvpau B(Fpu 4 _Fo u, + epakrF*ku )
= -;—eaﬁw)(’“’”"u By oF,
+ 4 €apu€por X PO UPUTF (22)
Now with the tensor
Pat = LeapuvEpor X P uPu (23)

and taking into account (20a), expression (22') becomes
Go=@iPF, + @it F*" . (24)

Relations (21) and (24) are the constitutive relations of
electromagnetism in a moving medium. In the rest frame
these relations reduce to (18) since uv=8v0 and since ac-

cording to (5) and (8) one has

G;=G;,=D;, G}=1e;,G"=H;, Gy,=G§=0, 05)
F,=F;,=E;, F}f=le;;F¥=G,;, F,=F%=0,

while the non-null components of the tensors (20) and
(23) are

00— i
(Pl]_Xl 0= _¢li |
i0, jk —

¢’1*i=%60jk1)( "7’5 > (26)

*%x — 1 jk,mn —
@it = z€oijk EomnI X Ky -

C. Constitutive equations in homogeneous isotropic media

In a homogeneous isotropic medium the non-null com-
ponents of the tensor y*»#" are

YO 0=ggl, yOhik=geliik |
2

yoil= k(g ikg 1 —gilgiky | @7)
with, in addition, those obtained by the symmetries (16).
€, k, and £=i& are, respectively, the permittivity, the in-
verse of the permeability, and the chirality parameter.

Taking into account (27), the components of the ten-

sors (20) and (23) may be easily calculated. With
u?=—u;u’ we get from (20a)
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(pooz —eu?,
P=g0=—euu’, (28a)
Pi=eulg—r(ugT+u'ul),
from (20b)
930=—6u’,
p8'=—Euou'’, @r°=—Euu,, (28b)
@f'=Elp;—u'uj)+(e—r)g eguou’ , |
and finally from (23)
Pl = —Ku?,
@0 =@io" = —Kuou; (28¢c)

*k — 2 — 2
ot =kupg;—elu’g;+uu;) .

One may note the symmetry between these relations.
One also checks that u,¢**=u,¢**=0 and similarly for
the two other tensors.

Substituting (28) into (21) gives

G =eF°+£F*°,
G'=(k—€)uou'F'+ e ugu, F}) (29)
+(eud —ku)F'+EF* .
Similarly the relations (24) become
Go=«kF} +EF, ,
G;=(e—K)uou;F*+eq,u’u'F*)

J
+(kul—eu®)F} +EF; .

(30

Then, using (8), (10), and (11), we obtain relations (29)
and (30) in terms of the fields E, B, D, and H. We get
from (29)

Diu;=€eE/u;—EB'u; , (31a)
D'u+e%*y H, =u%eE'—EB')
+e%*y; (kB —EEy ) (31b)
and from (30)
H'u;=kB’u;—EE’u; , (32a)
Huy+eqpu/D*=uy(kB;, —EE;)
+egxul(eEX—EBF) . (32b)
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(D,B,e)=(H,E,k) . (33)

For a stationary medium the relations (31b) and (32b)
reduce to

Di=eE'—£B', (34)
H;=«B;,—EE; , (35)

which have been used in many works [6] on electromag-
netic wave propagation in isotropic chiral media.

III. ELECTROMAGNETIC CHIRAL FORMALISM

In the formalism of Sec. II the vectors E and D and the
pseudovectors B and H are treated similarly, which is
normal in a medium invariant under space inversions.
But as already noticed when we discussed the constitutive
relations, chirality breaks this invariance. So it is
justifiable to look for a formalism treating vectors and
pseudovectors differently. We now present such a for-
malism based on the two 4-vectors

PY=G+inF*, Q,=G%+iF, . (36)

In these relations i =V —1 and 7 is an arbitrary dimen-
sional constant with the same dimension as €, «, and &.
As we shall see we may use this arbitrary constant to sim-
plify the formalism and, for instance, for plane waves in a
chiral isotropic medium a natural choice is 7= —§,
which justifies the name given to this formalism.

With the 4-vectors (36), the Maxwell equations (12) be-
come

3P, =0, u*d,P*=e’ 35,0, , (37)

and the solutions of Egs. (37) may be obtained in terms of
a Hertz 4-vector II, by the relations

Pa_—_eﬂa#vuvaﬁnw Qﬂ:uPapH“ , (38)
so that if we define H/1 as

I,=A,+inZ,, (39)
we get from (36) and (38)

G =e""""u 3,A,, Gr=uf3,A,,

F,=ufD,3, F*"‘=e}‘““"uva;2# .

(40)

Then, substituting these expressions into the constitutive
relations (21) and (24) gives

A — oA A
€ A, =" uld, Z, + @y e u 0,2, ,

. . 41
The relation '(3 la) [(32a)] is a consequence of (31b) [(32b)] upapAa=¢;pu aaazp‘{”(P;A* epkuvuvapzy ‘ (41)
and the relations (31) and (32) are invariant under the du-
ality transformation Eliminating A, from these two relations leads to
J
(¢™u°u paoap_ egawép}‘uﬁw:fugu Vapaa )EM — eoa}wq)x#u U Papag + ephﬂﬁq)xauﬁu aapao )2”: 0, (42)

which is the generalized wave equation satisfied by the
n-part 2, of the Hertz vector potential. Consequently, to
obtain the solutions to Maxwell’s equations one first has
to solve the generalized wave equation (42) and second to
calculate A, from (41). Then, knowing the Hertz poten-

I
tial, the relations (36) and (40) supply the electromagnetic
field.

We also note that in terms of the 4-vectors P® and Q,,
the boundary conditions (13) become
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n (P“—P*=0,
“ A~ (43)

u nPP—PPy=e"vy n (Q,—0,) .
It has been known for a long time [7] that the Hertz po-
tential is a powerful tool in chiral media, so the generali-
zation discussed here is a natural one with the virtue to
make calculations less cumbersome (see [4] for a compar-
ison).

IV. PLANE WAVES IN A MOVING HOMOGENEOUS
ISOTROPIC CHIRAL MEDIUM

A. Wave modes

We illustrate the chiral formalism on plane waves
propagating in a homogeneous isotropic chiral medium
moving with a uniform velocity. With all the com-
ponents of the electromagnetic field proportional to

ik xH
e"#™", all the results of the previous sections hold valid
provided that one changes the derivative operator 4, into
iK,,. Then the wave equation (42) becomes an algebraic
equation:
(@ ufu’K K, — e meP oty su KK )2,
— (7 ity PK, K, + Ep)"‘Bqa}‘:“uBu °K,K,)2,=0,
(44)
and with the tensor
K}‘“: Eaﬁluu aK[;’ , 45)
Eq. (44) becomes
(uPK @ —K @K™,
+ufK (K@it + @t K*)3,=0. (46)
We take the z axis in the direction of the velocity and we
assume that the plane waves also propagate in this direc-
tion. Finally, the motion is assumed to be slow enough to

make negligible the terms in 3% (8=v since ¢ =1) so that
one has

U =u,=K,=K,=0, u;=—u’=B, uy=u’=1.
47)

We also use the notations
Ko=KFfu,=K,—BK;, K3=K;—BK, . 47"

Then, taking into account (47) and (47'), the components
of the tensor K ™ become, according to (45),

K%=K#M=0, KU=e"K}, (48)

while the components (28) of the tensors ¢**, ¢, and
@, reduce to

=0,

Y= ¢,J'0.: —eBg’? (49a)
¢U=‘pﬁ=e—gij ,

P =

5 =Pjo =kBgj3 » (49b)

*k —
Pij —

*k

Pii —KE&ij »
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and
@5°=0,
P3/=—@1°=EBg} , (49¢)
o)'=Eg/+Ble—K)g"g;,—g"%;) -

Then, using (48) and (49), the linear system (46) becomes
BeK333=0,
(K} —kK'})Z'—2K (K, £32=0,
(eK @ —kK )2 +2K (K €' =0 ,
eK 233 —eBK3z=°=0 .

(50)

The system (50) has nontrivial solutions =!,2? with
30=33=0 if the following dispersion relation is satisfied:

(Kt —kK?)P+4K 2K 2E'=0, (51)
that is, since £=1§, if
eK P —kK3?+2EK (K5 =0 . (51)

Consequently, two different modes propagate in a moving
chiral medium which are right and left circularly polar-
ized waves. Using the definition (47') of K3 and Kj the
relation (51°) becomes

(€+2BEKE+2K (K | (E+Pe—Pr)—(k+2BEK; =0,

leading to

(k+2BE)K ;=+K o(£+Be—Br+(ex+ B +4BEe)/?) .
(52)

For £=f=0 one obtains the usual relation K;=nyK,
with n3=ex ! and for =0 one has

kK=K (LtE+ (ex+E)V?) (53)

which is a well-known result [8]. In the same way we get
from (52) for £=0

ny=notp(n—1), (54)

and more generally we deduce from (52) the refractive in-
dex

ny=[n3+x A&+ 4BEe)]?
+[B '+ B(n2—1—2&" 1], (55)

which is not in agreement with a previous result [4].

B. Electromagnetic fields

Assuming the condition (51’) is fulfilled, the solutions
(50) are

30=33=0, 3¥*==4;3!; (56)
according to (52) and (55)
K;=Ki=n*K, for 2*=i3',

(56")
K,;=K; =n"K, for 3?=—i3!,
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Now for the plane waves the second equation (41) be-
comes

KoA,=Ko@iPS,+@hte ™ u K 3, (57)
Substituting (56) into (57) and using (49c), we get
Ay=A;=0,

=£3 +ik £~3 ‘-K—Zﬂ 3, (58)
K} K3
Ay =tif3 —« EI——B K—i—l =,
K, ) &
and using (47’) a simple calculation gives
5—3—3 —K—2~1 —§~+0(B"' (58"
K, K Ko

where O (B?) means that one neglects the terms of order
superior to B. Then, taking into account (56’) one has

AO A3_O

t=¢3,+izt3,, (59)
Af=+ié—z*3,,
where z¥=xn* is the wave impedance.

Now, using (56) and (59), the components of the Hertz
vector potential are, according to (39),

IMy=I1,=0,
f=i(E+ntzH)Z,, (60)
nF=[F(E+n)—zF1=, .
Since the parameter 7 is arbitrary, a natural choice to
simplify (60) is 7= — & and the expressions (60) reduce to
II,=II,=0,
Nf=+iz*s, , (61)
Mf=—z*3, .

Then, substituting (61) into (38) in which 9, has been re-
placed by K, gives the components of the electromagnet-
ic field:

00=03;=0, Qit:iiK(l)zizl’ inz—K(l)ztzl ’
P=p3=0, P'*=—K\z*3,, P> =FiKiz'3,.

As already noted, these solutions correspond to right and
left circularly polarized plane waves.

C. Mode excitation

A linearly polarized plane wave incident normally on
the boundary S of a moving medium comes from a homo-
geneous achiral medium with refractive index #2=&r"!
In a moving medium the electromagnetic field is charac-
terized by the phase exp(iKgx,—iK3x3), with
KT =n%K,, n given by (55) and by the amplitudes (62)
Q;f and P*¥, in which 3, is an arbitrary constant.
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The phase of the incident plane wave is
exp(Koxo—K;x3), with K, =AK,=(&& )!/2K, and the
equality of phases on both s1cles of the boundary S implies

Ki=n*a)"'K, . (63)

This relation determines the wave numbers K 3: in the
moving medium in terms of the incident wave number
K3 .

Of course the components of the incident electromag-
netic field may be obtained by using the chiral formalism.
In fact a solution of the system (50) is

$0=32=33=0, $! arbitrary . (64)
This leads to

Ao=A,=K,=0, R,=—2%,, 2=(&0)'/2. (65)

The components of the Hertz vector potential are
fi,=0,=0, f,=i4g,, fM,=-23,. (66)

Since 7] is arbitrary the comparison of ﬁ] and ﬁ2 suggests
taking ==2. So in the chiral formalism a linearly po-
larized plane wave is divided in a natural way into two
circularly polarized plane waves with equal amplitude
and wave number. Amplitudes of the incident elec-
tromagnetic field are

Q\():Qs:o’ Q1i=iiK02§1, Q%Z_Kofﬁl ’
2,+

o (67)
P°=p3=0, p*=—R;2S8, p

—+1K3z§

Let us now consider the boundary conditions (43). Since
the components of the normal 4-vector are (0,0,1,0), we
get from (43)

ny(P*—P*)=0, (68a)
BP'—PH=—(0,—0,), (68b)
B(P2—P%)=0,—-0, . (68c)

From (62) and (67) one sees at once that (68a) is identical-
ly satisfied while (68b) and (68c) supply the same condi-
tion,

KoZ*=,=(Ky+BR)Z*S, , (69)

provided, or course, that chirality on both sides of S is
correctly matched. The relation (69) defines the ampli-
tudes of the electromagnetic field in the moving medium
in terms of the incident electromagnetic field.

V. CONCLUSION

The manifestly covariant formalism discussed in Sec. II
presents the advantage of being in a very compact form
(making sure that the equations and boundary equations
to be used are the correct ones), which is an important re-
sult. But this compact form is not well suited to the solu-
tions of practical problems. That is why we developed
the chiral formalism, supplying a generalized wave equa-
tion which leads with the boundary conditions to a well-
posed problem in Hadamard’s sense. One may rightly ar-
gue that it is difficult to solve such an equation. But on
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one hand the wave equation (42) simplifies considerably
in practical problems since anisotropy intervenes only in
permittivity, as in chiroplasmas, or in permeability, as in
chiroferrites [9]. On the other hand there exists a great
diversity of mathematical and numerical works on this
type of equation.

We were able to solve completely the problem of plane
waves propagating in a moving homogeneous isotropic
medium provided that one assumes the motion slow
enough with respect to the light velocity and provided
that the plane waves propagate in the same directian as
the medium. From a practical point of view the first as-

sumption is not very restrictive. By contrast, the second
one is essential to obtain the exact modes of propagation.
Otherwise the dispersion relation is the solution of an
equation of sixth degree.

To conclude, one may state that even if approximate
methods are required to solve a problem in the chiral for-
malism one shall have only to check the consistency of
the approximations, since the basic equations are correct.
Of course, for a stationary medium, the present formal-
ism reduces to the formalisms previously discussed in
[10] and [11] for isotropic and anisotropic media, respec-
tively.
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78110 Le Vésinet, France.
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